i

p— T

NASA Contractor Report 187492

(NASA-CR-187492) SNFTWARE RELIABILITY
EXPFRIMENTS DATA ANALYSIS AND INVFSTIGATION
(Charles Rivor Analytics) 64 p CsSCL 098

G3/ol

Software Reliability Experiments
Data Analysis and Investigation

J. Leslie Walker and Alper K. Caglayan

Charles River Analytics Inc.
Cambridge, MA 02139

The Charles Stark Draper Laboratory Inc.
Cambridge, MA 02139

Contract NAS1-18061

January 1991

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

Nel-17026

Unclas
03322937

Technical Report R9005 Charles River Analytics Inc.

TABLE OF CONTENTS
1. INTRODUCTION ittt e e e e e e 1
2. ANALYSIS OF SOFTWARE ERRORS IN RSDIMU PROGRAM 3
2.1. Software Error Descriptions 4
2.1.1. Failuresincase U2(Sp1) v 4
2.1.2. Failure to Properly Indicate Estimation Status 7
2.2. Analysis of Errors and Failures in RSDIMU Programs 7
2.3. Analysis of Errors and Failures in Development and Certification Site
Subpopulation 13
2.4, Resultsof Error Analysis 21
3. ACCEPTANCE CHECK DEVELOPMENT i 22
3.1 Interactive ProofSt i e 22
3.2 Generalized Interactive Checkers i 23
4. RELIABILITY ANALYSIS e s 31
4.1. N-Version vs. Recovery Block Structures oo 31
4.1.1. N-Version Structure Reliability 31
4.1.2. Recovery Block Structure Reliability 31
4.1.2.1. Recovery Block Structure Reliability with Perfect
Acceptance Check 32
4.1.2.2. Recovery Block Structure Reliability with Imperfect
AcceptanceCheck oo 32
4.1.3. Comparison of Structures for RSDIMU Experiment Version
Populationt 33
4.2. Reliability of Software Fault Tolerant Structures Under Diverse
Methodologieso i 36
42.1. Diversity of Development Site 37
42.2. Diversity of Certification Site e 39
4.2.3. Diversity of Version Reliability 42
4.2.4. Results of Subpopulation Diversity Reliability Analysis 47
4.3. Diverse N-Version Fault Tolerant Structureso 47
4.3.1. Definition and Modelling of Diverse Structures 48
S. CONCLUSIONS . ..ttt e e i e e e s e 55
6. REFERENCESottt ettt e e e e e 59

Technical Report R9005 Charles River Analytics Inc.

LIST OF FIGURES

Figure 2.1: Categories of Relationships between Logical Errors 3
Figure 2.3.1: Venn Diagram of Input Domains of Conceptual Errors 4dandS. 19
Figure 4.1.1: Comparison of N-Version and Recovery Block Structure Reliability. 35
Figure 4.2.1.1: Coincident Error Model of Reliability of N-Version Structures Built from

Development Subpopulations. 39
Figure 4.2.1.2: Finite Population Model of Reliability of N-Version Structures Built from

Development Subpopulations. 40
Figure 4.2.2.1: Coincident Model of Reliability of N-Version Structures Built from

Certification Subpopulations. 42
Figure 4.2.2.2: Finite Population Model of Reliability of N-Version Structures Built from

Certification Subpopulations. 42
Figure 4.2.3.1: Scatter Plot of RSDIMU Version Reliability. 43
Figure 4.2.3.2: Scatter Plot of RSDIMU Version Reliability with versions uclab and uviuca

Removed.. e e e e e e 44
Figure 4.2.3.3: Average Failure Probability of Reliability Group Subpopulations. 46
Figure 4.2.3.4: Coincident Model of Reliability of N-Version Structures Built from

Reliability Subpopulations. e e e e e e e 47
Figure 4.2.3.5: Finite Population Model of Reliability of N-Version Structures Built from

Reliability Subpopulations.o 47

Figure 4.3.1: Comparison of Infinite Population Models for Diverse and Homogenous

GETUCIUTES. .« v v v v v v s e e e et et s s e s 53
Figure 4.3.2: Comparison of Finite Population Structure Reliability for Diverse and

Homogenous SIUCIUTES. .+ v v v v v v v v v i e e s s 54

Technical Report R9005 Charles River Analytics Inc.

LIST OF TABLES

Table 2.1.1: Summary of Conceptual Errors in RSDIMU Versions. 5
Table 2.2.3: Significance of Correlated Occurrence of Failures in RSDIMU Programs. 11
Table 2.2.5: Significance of Correlation Between Failures due to ngical Errors. 13
Table 2.3.2: Correlated Occurrence of Conceptual Errors in RSDIMU Programs by

Certification SIE. . . . v o v v v i e i e e e e e 17
Table 2.3.3: Correlation of Occurrence of Conceptual Errors Between Development Sites. . . . 17
Table 2.3.4: Correlation of Occurrence of Conceptual Errors Between Certification Sites. . . . 18
Table 2.3.5: Significance of Correlation of Occurrence of Conceptual Errors Between

Development Sites. oo v i 18

Table 2.3.6: Significance of Correlation of Occurrence of Conceptual Errors Between

Certification SIteS. . . . v o . i i it it e e e e 18
Table 2.3.7; Failure Intensity Distribution for Conceptual Errors. 20
Table 2.3.8: Version Failure Distributions for Conceptual Errors. 21
Table 4.1.3.1: Failure Intensity Distribution Obtained from RSDIMU Experiment. 35
Table 4.2.1.1: Failure Intensity Distribution by Development Site. 38
Table 4.2.2.1. Certification Sites for RSDIMU Programs. 40
Table 4.2.2.2. Failure Intensity Distribution by Certification Site. 41
Table 4.2.3.1: Version Subpopulations Based upon version reliability. 45
Table 4.2.3.2: Failure Intensity Distributions by Reliability Groups 46

Technical Report R3005 Charles River Analytics Inc.

1. INTRODUCTION

This report describes the research done on CSDL Subcontract No. 791. The program
versions and failure data used in this research were produced under NASA Contract number NAS1-
17705. This previous work is referred to as the RSDIMU experiment. The main thrust of the
current work is to: 1) develop an understanding of the fundamental reasons making redundant
software components fail dependently, and 2) investigate the construction of software fault
tolerant structures maximizing the independence between developed software components.

The work described in this report falls into four categories:

1. Error Analysis

2. Acceptance Check Development

3. N-Version vs. Recovery Block Analysis
4. Analysis of Software Diversity

Under error analysis, we examine the particular errors made by programmers in the
RSDIMU experiment in order to determine what the effect of programmer errors is on the failure
behavior of redundant software components. We are particularly interested in errors which are not
similar in nature, but cause coincident failures. This analysis is important in identifying software
development methodologies to improve the independence of programmer errors which cause
coincident failures. This analysis is also important in determining the limitation of independent
software development (i.e. what degree of independent failure behavior we can expect even if we
are able to achieve independence between the errors made by the authors of different redundant
software components).

Under acceptance check development, we develop the theory of a generalized acceptance
check development methodology, and present examples of applications of this theory. This
methodology will produce acceptance checks which fail independently from the software whose
correctness they are designed to check. This work is important in building recovery block
structures. In addition, this work is applicable to the validation of high reliability software.

Under N-Version vs. Recovery Block analysis we have constructed models which predict

Technical Report R9005 Charles River Analytics Inc.

the reliability of these two types of fault tolerant software structures. These models predict the
performance of such software structures depending upon the number of versions implemented, and
the reliability of the associated acceptance check. Using these models we compare these two
approaches to fault tolerant software development in order to determine which is appropriate under
certain conditions. In particular, we compare these models using the programs from the RSDIMU
experiment as a realistic example of a redundant component population and determine under what
conditions we should choose N-Version programming and when to choose recovery blocks in
order to most efficiently use the available resources.

Under our analysis of software diversity, we examine the effects of diverse methodologies
on the development of redundant software components. We are particularly interested in the
impact of enforced diversity on reliability gain, and in development methodologies that produce
independent failure behavior. There are two results that we have achieved with this analysis: 1)
models for predicting the reliability of diverse software structures, and 2) an understanding of what
type of diversity is required. We obtain these results both in the general case and in our particular
examination of the results of the RSDIMU experiment.

Technical Report R3005 Charles River Analytics Inc.

2. ANALYSIS OF SOFTWARE ERRORS IN RSDIMU PROGRAMS

In this section we present our analysis of the software errors which were identified in each
of the 20 RSDIMU programs and the effects of these software errors on the failure behavior of the
programs. Specifically, we describe the software errors which occur in the programs and what
misconceptions of the programmers caused them to make these errors. We also present a
comparison between the correlation of failures between separate programs and the similarities
between the errors made by the programs' authors. Finally, we group the programs according to
development and certification sites and examine the failures and the errors in order to determine the
effects of site diversity.

We relate software errors to each other as shown in figure 2.1. A conceptual error results
from the programmer's misconception about how the program is ultimately meant to behave.
When the programmer implements this misconceived program, their conceptual errors are
manifested as logical errors. A logical error is the particular error which causes a program to fail.
We often treat logical errors independently of the misconceptions which caused them.

/Errors\
Conceptually Conceptually
related unrelated
Causing Not causing Causing Not causing
coincident coincident coincident coincident
failures failures failures failures

Figure 2.1: Categories of Relationships between Logical Errors.

Two logical errors are said to be conceptually related if they result from the same or similar
misconceptions on the part of the respective programmers. We further relate errors by whether or
not they tend to cause their respective programs to fail together. We consider each logical error to
have an input domain. This domain is the set of all inputs for which a particular logical error will

Technical Report R9005 Charles River Analytics Inc.

cause a failure. If the input domains of two logical errors overlap significantly then we say that

these logical errors cause coincident failures.
2.1. Software Error Descriptions

In this section we describe three additional conceptual software errors which were not
described in volume 3 of R8903. Two of these additional conceptual errors caused failures in only
the U2 (Sg,1) case and these are described in section 2.1.1. The remaining conceptual error is
described in section 2.1.2. The combination of this section and volume 3 of R8903 describe all of
the errors which we analyzed in this study. A summary of the conceptual errors that we examined
in detail is shown in table 2.1.1. o

The inputs to the RSMIMU programs are divided into 6 groups based on the parameters
used to generate the input data. These parameters govern the difficulty with which the programs
must come up with a correct answer for the data. The names used to refer to these input cases are:

U1(S0.0), U2(So.1), U3(S1,0), U4(S1.1), U5(S2,0), and U6(S2,1).

2.1.1. Failures in case U2 (S¢,1)

In this section we describe the errors which were discovered in the U2 case (Sg,1).- These errors
all occurred in the sensor failure isolation routines of the RSDIMU programs. Inputs for the U2
case often created situations where an edge relation was violated which was common 10 two
"good" faces. This caused two situations which were not properly handled by many of the

programmers:
1. Three edge relations failed, but there was no face common to them.
2. Four edge relations failed.

The first of these situations was not correctly handled by versions uclac, uclad, and uvac. The
second of these situations was not correctly handled by versions uclac, uclad, uiuca, uiuce, and
uvac. In general, the versions failed because they assumed that these situations would never
occur. In some cases, however, some of the programs still managed to give the correct outputs

even though the algorithm that was used would only give the correct outputs in special situations.

Technical Report R9005 Charles River Analytics Inc.

Fault Software Faults Versions
Number)
A unit vector in an orthogonal coordinate systcm was ncsud
1 apparcntly assumed 10 remain a unit vector after a uclae
nonorthogonal transformation
Failure isolation algorithm was implemented in a coordinatc |
2 system other than specified uiucd
¥ pec uvac
3 Vector components were apparcntly assumed to remain the] uvab
same after a small angle transformation
Three cdge out-of-tolerance edge relations were apparcntly uclac
4 assumed to have a face common 10 all of the out-of-tolerance | uclad
edge relations uvac
uclac
uclad
b Four out-of-tolcrance cdge relations were not processed uiuca
uiuce
uvac
6 Test threshold computed incorrectly uiuca
7 Variable initialized incorrectly uclab
8 Best cstimate of acceleration left uninitialized after system uiuca
failure uclab

Table 2.1.1: Summary of Conceptual Errors in RSDIMU Versions.

Version uclac failed under both of the situations described. The authors assumed that if
more than one edge relation failed for more than one face, then the system should fail. This is true
if more than one edge relation fails for more than three faces and not two. The result was that
when four edge relations were violated, a system failure was indicated. In some cases three
violated edge relations also triggered a system failure due to the same fault.

Version uclad also failed under both of the situations described. The failure isolation
algorithm contained a case statement whose tag was the number of failed edge relations. The
authors grouped the 4, 5, and 6 edge relation out-of -tolerance cases together and failed the system
in all of these situations. This caused the program to fail in all cases where 4 edge relations were

Technical Report R9005 Charles River Analytics Inc.

out of tolerance. Version uclad failed whenever three edge relations were out of tolerance with no
face common to them. The authors specifically detected this situation and failed the system, which
was incorrect.

Version uiuca failed only when 4 edge relations were out-of-tolerance. The authors use the
total number of times an edge relation is out-of-tolerance for each face -- thus each time an edge
relation is out-of-tolerance it counts twice -- to determine whether or not a failure has occurred.
When any three edge relations are out-of-tolerance, this total is 6 and the case is handled directly.
However, when 4 edge relations are out-of-tolerance the total is 8 and the authors did not consider
this possibility. In such a case no effort was made to isolate a sensor failure on any of the faces,
and the version failed. 7

Version uiuce also failed only when 4 edge relations were out-of-tolerance. The authors
made independent tests on every combination of 3 from 6 edge relations that could be
out-of-tolerance with a common face between them. The algorithm is to check the edge relation
involved with face A and each of faces B, C, and D. The first one of these edge relations that is
out-of-tolerance is assumed to be the only possibility for failure. Thus if the AB edge relation is
out-of-tolerance, then only the BC,BD and AC,AD edge relations are checked. If four edge
relations are out-of-tolerance with a face common to three of them and AB is not one of these three,
then this version will assume that no face has failed the edge-vector test. This causes failures only
in 3 of the possible 15 cases where four edge relations can fail, so version uiuce did not fail in all
of the four edge out-of-tolerance cases.

The authors of version uvac assume that whenever three edge vector relations are
out-of-tolerance there will be a face common to them. They then assigned a failure signature to
each of the 4 possible combinations of edge relation which could be out-of-tolerance with a single
face in common. This signature can be computed directly from the edge relations and examined to
see which face fails. Since there are actually 15 possible combinations of 3 edge relations this
algorithm does not always work. However when a signature does not match one of the 4 key
values, no face is assumed to have failed. This produces the correct result for most of the three
edge relation combinations. The program fails because combinations where there is no common
face to the three edge relations will produce a signature that indicates the failure of one face. Since
this only occurs for 2 of 15 possible combinations of three edge relations, the program did not fail
in all of the cases of three edge relations out-of-tolerance with no common face.

Version uvac also contains a case statement similar to that of version uclad where the tag

value is the number of out-of-tolerance edge relations. Once again, the 4, 5, and 6 edge relation

Technical Report R9005 Charles River Analytics Inc.

cases are grouped together. Since system failure detection is handled prior to this point in the
program, nothing is done for these cases and no failure is detected. The prior system failure
detection algorithm does not handle the case of 4 edge relations out-of-tolerance and so in this case

no failure is detected.

2.1.2. Failure to Properly Indicate Estimation Status

We diagnosed an error in version uclab which was not described in report R8903. This
error causes failures whenever a system failure is signaled due to lack of good faces for an
analytical estimate of acceleration. The specification instructs programmers to set the estimate
status of each of the 5 estimates (best estimate and each channel estimate) to UNDEFINED
whenever a system failure is signaled. The authors of version uclab set the channel estimate status
to UNDEFINED in this case, but allow the best estimate to remain uninitialized. Thus the status of
the best estimate remains at whatever value is set by the compiler for initialization. This often

causes failures when the program fails the system.
Section 2 of R8903 describes an error in version uiuca which is similar to that of uclab.

When a system error is signaled the value of the.best estimate is not set to zero and the status is not
set to UNDEFINED. The effects of this error are identical to that of the uclab best estimate error.

2.2. Analysis of Errors and Failures in RSDIMU Programs

Here we present our analysis of the logical errors which occur in the 20 RSDIMU
versions. We examine the correlation of these errors and how this relates to the conceptual and

input domain relationships between the logical errors.
Table 2.2.1 shows the correlation of the occurrence of the conceptual errors of table 2.1.1.

The numbers along the diagonal of this grid (x aa) represent the number of times a conceptual error
occurs in version A. The numbers off the diagonal (xag) represent the number of
conceptually-related errors which occur between versions A and B.

Table 2.2.2 shows the input correlation of failures between the RSDIMU programs. The
numbers along the diagonal (x o) represent the total number of inputs on which version A failed.
The numbers off the diagonal (xap) represent the total number of inputs on which both version A
and B failed together. It is difficult to judge the significance of the numbers since they represent

8

Charles River Analytics Inc.

Technical Report R9005

only the count of failures. In order to dtermine whether or not two versions exhibit significantly

correlated failure behavior we performed a 2 test with the null hypothesis:

"Versions A and B exhibit independent failure behavior

H

for each combination of versions A,B following the same statistical test as [Brilliant, Knight, and

Leveson 1989].

s > s o Jololololololclolelclololeololo|ele]ole]o]
3> s |lolojlo|lec|clo|lc|o]lolo|ololo|cjoleo|eloic|o
3 > m o0 |olo|loleclololcjn|alol~|lolol~|~|olojn|o]e
3> m o |ololeclc|ocieclc|olc|o|cioje|oiolol—~|olele
s »>» s a lolololciolecicleolojololelololo|olojolc|o

a -5 o0 o |olc|lojec|eclalel~=I~|lcl~|ocjolol~lojol—~|o|e

s - zcowl|lolclolec|olecliel~lololjolc|eli~|loclojo|~|olo]

s -5 o ololo|lolec|lololcicl|clo|alclio|oc|olo|eo|o|olo

s-3o0.o |olojololo|ole|o|e|lojo]olc|olo|o|eleie|e]

u...uca0000001...103000...00100W

s o—w o |olo|lol~lcleleclolol~lolojoic|o|clieo|olole

s o—mololo|loloclo|olelalajcl~lolciol~ioclo|a|o|o

s o—n ololololo|eclc]o|n]lalo|~|oclol—~|~|o|oln|clo

S o— s .o lololo|lolololalolelol~lololojololo|o|oje

s o —aunl|ololojlc|ololo|olo|ojo|clo|olelolic|o|o|e

comwool|looc|lolclolelololololoc|olo|oleojolc|ojo|e

cowowolojole~|ocleleloclol~lc|ololo|olo|ololoie

e o woololo|lclcio|leclolololjolelolele|loclo|o|olo|e

= owsololo|lo|lo|olololole|e|olclo|o|clole|cio|o

o woalolo|looclelelolololololcle|c|olo|o|ole|e

AHEEHEEE R E R BB EEEEEE
S EFIF I BB B EIEE HE R EHEBELE

Table 2.2.1: Correlated Occurrence of Conceptual Errors

in RSDIMU Program

- SIS EEREEREREREEEREREEE =)
S > S
SEREREEREREEREREEEEEEE =)
=3 >0 O
Slololelololadlalin]lanleole wlolunl o [=)
O 00 ~r 0
2> w0 NEINEE g 8|2
=) | S S =)
OOSOGQ_;S %go = ogvow =)
=5 > & DO — —_ —_) -
SR EEEREREREEREEEEEEEE [=)
S > S o
S [=) S =1 I I o0 [=]) =])
=) =) =) EEEIE BEIE £ <
5.~ 30
S =) =S =1 K23) S =TS S
e @ 128 2l=l° S R
="":U — — — -
S EEPEREEPEREREDEEREREEBEE R =)
- 30O
SN EEEEPEEREEREEREREREREE =)
o .~ 30
o [[=} [e] [=2 Y3 I] <
e 2 °g§80”° =g -3 B B4 I e
o430 = 3 ™
b=y Q
Q <
- [=] =} ~
HEEHBEEBNEREEN 3 il N S e
B U e © -
Ocooﬁooocogo-*o%ooOg [=]
= D 3 83 — o
MW — o
e HEEEEBEEEENBEEEBEENE
30~ % | < ~ = =] en
S S T
Ooégooggg gmo = el y =)
5O — @ <
@ 2
\ Q
SIS EIENEFNEEREREREBREEEE =)
50—«
LIEEEPREREEPEEEEEDEREREREEEE =)
20w 3
SNSRI EEREINE R EREERE R R =
Qf B ol < o o ©
=0 »n3 a
OoéoOoOoOoOQOcOoOo [=)
g0 v o
SR EERNEEPREEREREREREBREE =)
= 0w D
FEREEREEREERERDEREREREEEE =Y
HO w =
g .
s o
E 33 EEREEEEERERER
= .
g 2 =%-£l 3| 354383533439 °>

10

Input Correlation of Failures between RSDIMU Programs.

Table 2.2.2

Technical Report R90035 Charles River Analytics Inc.

The %2 statistic can be computed from table 2.2.2 using:

= (xaB - pAPBN)?
AB PaPBn
,((xan - xan) - pA 1-pg)n)>

pA 1-ps)n 51
((xpB - xaB) - (1-pA)peN)?

(1-palpsn
((n-(xaa + BB - XaB)) - (1-pAX 1-pp)n)*

(1-paX 1-pa)n

+

+

where p A is the average reliability of version A. For each pair of versions A,B we compare this

statistic with a threshold of & = 5% level with 3 degrees of freedom. The result of this analysis 1s

table 2.2.3. A dot "." in this table represents comparisons which are meaningless because our
testing was unable to produce failures in either or both of the versions in question. A star "*" in
this table represents a comparison in which the statistic was not large enough to cause rejection of
the null hypothesis of independence. In this case the versions are assumed to fail independently.
Finally, a "C" in this table represents a comparison in which the statistic was large enough to cause
rejection of the null hypothesis. In this case the programs were assumed not to have failed
independently. In order to determine whether the programs exhibited dependent or better than
independent failure behavior we computed the correlation coefficient for the two failure behaviors.
A "-C" indicates that the programs exhibited better than independent failure behavior.

Each of the conceptual errors in table 2.1.1 can be traced to a particular logical error in each
program involved. We have determined the number of failures in each program due to each logical
error which was found to occur in the program from table 2.1.1. The correlation between these

individual logical errors is shown in table 2.2.4. We applied the same %2 test to these correlations

to obtain a correlation shown in table 2.2.5. By comparing tables 2.2.3 and 2.2.5 to table 2.2.1
we observe that some of the failure correlation between versions can be attributed to the existence
of logical errors which are conceptually-related. Where table 2.2.1 indicates that two versions
have one or more conceptually-related logical errors in common, presumably these related logical
errors are the cause of the correlation in table 2.2.3. The following pairs of versions have

11

Technical Report R9005 Charles River Analytics Inc.

significant failure correlation which can be attributed to conceptually-related logical errors:

(uclae,ncsud) (uclab,uiuca) (uclac,uclad)
(uclac,uiuca) (uclac,uiucd) (uclac,uiuce)
(uclac,uvac) (uclad,uiuca) (uclad,uiuce)
(uclad,uvac) (uiuca,uiuce) (uiuca,uvac)
(uiucd,uvac) (uiuce,uvac)

nfnlnlninjujujujujujujujujulu
. u u u u u
clclclceclelciclcleclcecpi]t
v \' \'4 A\ \'
slslstistis|ljijtjt]l}jujujujul]u
alalajaja
ulufufjufufajajajalajcfcfefefct [0 |4l
alblcldlelalblc|d]lejajblc]d]e
ncsua
ncsub
nesuc | .t -1 .. .
ncsud ... |Cl*|* Cl* C * * C
ncsue * C * * C C * * * * * *
uclaa * * C * * * * * %* % * * *
uclab cl*|*ic|Cj-C|C]|C *I1C|* Cl*
uclac clcl*iclcicjcijc cl|cic cjicC
uclad *ICl*|CICiC]|*|C Cl*|C *1C
uclae Cl*i1*|CclcCc|*|C|cC *|1C|* cicC
uiuca cl*1*|Cc]cCc|CiC]C *{1C|C c|C
uiuch .
UiUCC * * * C C * * C * * * *
wiued | .}] JCL*L* C|* cl.}|*IC|*].|C]C
aivee | ... 1*1*1=*lclci*ic).{*1*|C].|*]|C
wa | ..t o001 -1-01-1- .
wab .. 1. lcl*l*lclcl*jcicl.|*]|C|*|.-]|C|C
wac | 1. 1. lcl*]*l*|clcjc]c].{*]|C|C]|.|C|C
uvad
uvae

Table 2.2.3: Significance of Correlated Occurrence of Failures in RSDIMU Programs.

12

sures3o1d NIASY Ul SI0L [ed1307] JO SA0UALMID)) UIIMId UONB[IIIO) mduy 47z s|qel

A1) 0 ol {0 86 |0 ov |0 |0 0 01 o 0 [X4 9 z'oeAn
0 181 {0 0 LY 0 0 0 18T {0 081t |0 0 081 |0 0 0 0 groeAn JeAn
0 0 w10 0 0 0 0 0 0 0 () Ly |0 0 0 0 $'orAD
01 10 0 ¢or |0 86 10 184 0 €8 0 0 o1 |0 10 1 L1 +9 £'qean qeAn
0 Ly 0 0 Ly 0 0 0 LY 0 Ly 0 0 Ly 0 0 0 0 gaonm JEH
86 0 0 86 0 66 0 8¢ 0 €8 0 0 86 0 0 1 91 09 g'ponm ponin
0 0 0 0 0 0 8CSIY jo) 0 0 0 0 0 0 0 88¥81 0 geonimn
ov 0 0 187 0 8¢ 0 vig 10 LL 0 0 v 0 0 1 in ¥S geonm esnm
0 181 10 0 Ly |0 0 0 18T 10 081 {0 0 08T {0 0 0 0 ¢eonm
s PP g [0 €8 |0 L P el P g 0o 1 Te %9 Toepn | XPn |
0 081 |0 0 Ly 1o 0 0 081 10 161 |0 0 161 [0 0 0 0 ¢'pepon peon
0 0 w0 0 0 0 0 0 0 0 <A v [0 0 0 0 y'peron
00 [0 0 YT |0 86 |0 w10 € |0 0 Yol o 0 [Ll 9 ¢oen
0 081 v 0 w0 0 0 081 0 161 |vvz [0 8ey 10 0 0 0 ¢'oepon oepn
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1y o 0 0 3N
1 0 0 1 0 I 0 1 0 I 0 0 I 0 0 L617 [0 0 8"qeron qeron
1 o 0 L1 0 91 888l 1L |0 i€ Jo 0 Ll 0 0 0 Lee6y oz L'qeron
w0 P w0 0o P vs [0 % 0P oS TR R ot |1zt | vpnsou | PE
4 S v £ S z 8 9 S i S 14 T S ¥ 8 L I
o)) o} q -} P v e v 9 P p 2 b} 0 q q P
e 4 € . 2 o] bo] 2 d e e v e 1 4 L1 e n
A A A A n n n n n | i I | I [I I s
n n n n 1 1 1 1 1 9 b} b} 2 b} 2 b} 2 0
n n n n n n n n n n n n a u
JRAT gean |900m | paynm eonm aepon pepon xRN qepon pasou

13

Charles River Analytics Inc.

Technical Report R9005

C

o CC***,C**C*C*C*C*#C
[$] aC.S*C*tcw**C*C*C*C**C*
® O .ot * % | | JO{* O * J% [% [|[# |« |# |# {Olx |=
o o cen JOTO# {» {» JO|* | O]+ {Ol* [Olx [O]* [+ |O
v ol o CC.S****C**C*C**”*C**C*
ool 3. 0T OO % |x [O]* |* Ol Ol {Olx |Olx |* |0
s-30= s O]QQ[Q [QIC]CTOTR T x [+ |* = [@]=
O | o= s o (O]Ol* [» |* [L]* |+ (O |[OIQRIUI* [Ul* |» O
o . o v x [Qfe e O |x JUls [Ox Qs JO]* |« O]
s ol S o = OOl |x lx [O]x e Ol (CIQ]OI* (O |* [+ |O
adu ST s x [Qle fs [Of» |x O+ [O]* |Q (= {O]|x |» jUIx
= ad.4*C**C*C****C***C*W*
=] SO0 IO |* |x [O]* 1» |[Ol* O+ U=+ [O]|* |*» O
T ac.5¢C**C*CC:,C*C*C*CC*
= aC.4*C*C*******CW******
- = o oo |x [QlOlx o (o o [+ [% |o e [Qle {% | |« |% =
°I= so .~ |OIOQIRIQIVIQIRIVIQRI|Iv|OI= U]+ |Qlu
39| e 2T = OO [{x TOI* |« [Ols JO|* O |O|* |* |O
IR R E IR IR R R

o o

rrelation Between Failures

Significance of Co

Table 2.2.5:

due to Logical Errors.

14

Technical Report R9005 Charles River Analytics Inc.

There are still quite a few pairs of failure correlated versions in table 2.2.3 which cannot be
attributed to conceptually related errors. For example, errors 1, 2, 3, and 6 of table 2.1.1 have
input domains which will overlap in cases where the misalignment angles are large and/or the
tolerance parameter NSIGT is small (indicating very little tolerance between the edge vectors). The
following pairs of version have errors which are conceptually-unrelated, but cause coincident

failures:
(ncsud,uclac) (ncsud,uiuca) (ncsud,uiucd)
(ncsud,uvab) (ncsud,uvac) (uclac,uclae)
(uclac,uvab) (uclae,uiuca) (uclae,uiucd)
(uclae,uvab) (uclae,uvac) (uiuca,uiucd)
(uiuca,uvab) (uiucd,uvab) (uvab,uvac)
(uclab,uclac) (uclab,uclad)

The existence of conceptually-related logical errors is one factor that leads to correlated
failure behavior. It is possible that certain conceptual errors are caused by the development
methodologies. Diverse development methodologies may reduce the failure correlation of this type.

The existence of overlapping input domains is another factor that leads to correlated failure
behavior. The existence of a logical error in a version indicates that the input domain for that
logical error lies outside the domain of inputs that was included by the testing methodology.
Identical testing methodologies as well as methodologies whose input domains overlap are more
likely to allow logical errors with overlapping input domains. Diverse testing methodologies may
reduce the occurrence of this type of related errors.

Errors 7 and 8 are shown by table 2.2.5 to produce negative correlation with most of the
other conceptual errors. Most significantly, logical error uclab.7 causes negative correlation with
versions uclac and uclad through errors uclac.4, uclac.5, uclad.4, and uclad.5. These errors are

conceptually unrelated.

2.3. Analysis of Errors and Failures in Development and Certification Site

Subpopulations
Diversity of development methodologies is one way to inhibit the occurrence of logical

15

Technical Report R9005 Charles River Analytics Inc.

errors which cause coincident failures. Here we examine the diversity which exists in the
RSDIMU experiment in order to determine the degree to which this diversity minimizes the
occurrence of logical errors which cause coincident failures. The RSDIMU programs were
developed by independent development teams at four development sites. They were then certified
at three different certification sites. The different sites lead to the determination of two different
diverse classifications of programs. These are classification according to development site and
classification according to certification site. Table 2.3.1 shows the correlation of the occurrence of
conceptually-related logical errors broken into groups by development site. Table 2.3.2 shows the
correlation of the occurrence of conceptually-related logical errors broken into groups by
certification site. By totalling the number of conceptually-related logical errors between each pair
of versions at each pair of sites, we obtain the data for tables 2.3.3 and 2.3.4. These are a measure
of how well the diversity avoided the occurrence of conceptually-related logical errors. We then

performed a %2 test with the null hypothesis:

Hp = "The occurrence of conceptually-related errors in programs produced by sites A and

B was independent”

For two different sites A and B in the following tables, the rejection of H, indicates that
these sites produce programs which contained a significantly large number of conceptually related
errors. In this case we conclude that the diversity between these sites is unsuccessful in reducing
the occurrence of conceptually related errors. The acceptance of the H, indicates that this type of
site diversity might be a good method of reducing the occurrence of conceptually related errors.

The results of this test are shown in tables 2.3.5 and 2.3.6. Here we see that the only site
which produced versions in which the occurrence of conceptually-related logical errors is not
correlated is the development site ncsu. This information seems to contradict the failure correlation
information of table 2.2.3 in which development sites ncsu and uva show a relatively small amount

of failure correlation.

16

Charles River Analytics Inc.

Technical Report R9005

uva

0{0]0[0]0

uiuc

ucla

2 O «»w 3

u

D= 30

17

Table 2.3.1: Correlated Occurrence of Conceptual Errors in
RSDIMU Programs by Development Site

Charles River Analytics Inc.

Technical Report R9005

0

0

1

uva

ojojolojojojo

o[of o] o] o] of 0
o] of o] 2f o] of 0

0] 0} 0| O

0 0f 0] 0] O] O] O
0} 0} 0] 0] O] 0} O

2
£
o ola|olo|mk Sjclolol~lojo
= oclolololo Slolololclo|o
=) Slojolo|o clolojlolololo
m =) SlNiclo|a clojcjo|~|olo
b=
=) clolo|olo clolololocloclo
=) clololo[o clololololole
=) olololo|o Slololo ool
£ ¥l
AEEIEIEIHIE HEIRIETREE
E 2| 815|3]5 LIel 2855|535
e o un =2 o - -]

Table 2.3.2: Correlated Occurrence of Conceptual Errors

in RSDIMU Programs by Certification Site.

uva

uiuc

ncsu ucla

0

su
la

nc
uiuc
u

uc

va

Table 2.3.3: Correlation of Occurrence of Conceptual Errors

Between Development Sites.
18

Technical Report R9005 Charles River Analytics Inc.

ncsu| ucsb| uva
ncsu| _ 9 2
ucsb| 9 - 3
uva 2 3 -

Table 2.3.4: Correlation of Occurrence of Conceptual Errors
Between Certification Sites.

ncsu § ucla | uwiuc| uva

ncsu | - * * *
ucla * - C C
uiuc * C - C

uva * C C -

Table 2.3.5: Significance of Correlation of Occurrence of Conceptual Errors

Between Development Sites.

ncsu | ucsb{ uva
ncsu | - C C
ucsb | C - C
uva C C -

Table 2.3.6: Significance of Correlation of Occurrence of Conceptual Errors
Between Certification Sites.

The reason for the apparent contradiction is the invalidity of the assumption that
conceptually-related errors will always cause coincident failures and that conceptually-unrelated
errors will not cause coincident failures. Table 2.3.7 shows the failure intensity distributions
corresponding to each of the conceptual errors of table 2.1.1. For each conceptual error ¢; the

19

Technical Report R9005 Charles River Analytics Inc.

corresponding failure intensity distribution is compiled using only the failures which were
attributable to logical errors which were in turn attributable to the conceptual error e;. Table 2.3.8
shows the corresponding version failure distribution for each e;.

An example of conceptually-related errors which do not cause coincident failures is uclad.4
with uclac.4 and uvac.4. From the descriptions of the logical errors attributable to conceptual error
number 4 in section 2.1.1 we expect that the input domain of uclac.4 would entirely contain the
input domain of uclad.4 which would entirely contain the input domain of uvac.4. Table 2.3.7,
however, shows that there are no 3 version coincident failures attributable to conceptual error
number 4. This means that a significant part of the input domains of these logical errors does not

overlap.

uclad.4

Figure 2.3.1: Venn Diagram of Input Domains of Conceptual Errors 4 and 5.

Detailed analysis of the input domains of logical errors attributable to conceptual errors 4
and 5 leads to the diagram of figure 2.3.1. This is a Venn diagram of the input domains for each
of these logical errors. One interesting feature of this diagram is that logical errors uiuca.5 and
uvac.5 have the same input domain which strongly supports the assertion that conceptually-related
errors cause coincident failures. Notice also, however, that the domain of the failures of uclac.4 lie
completely outside of the other failures attributable to conceptual error number 4. Further, the
input domain of uclad.4 and uvac.4 lie entirely within the input domain of uclac.5. This indicates

20

Technical Report R9005 Charles River Analytics Inc.

that the failures of uclad.4 and uvac.4 are more correlated with uclac.5 which is non-related than
with uclac.4 which is conceptually-related.

Another example of conceptually-related errors that do not cause coincident failures
is uclab.8 with uiuca.8. Notice that logical errors uclab.8 and uiuca.8 are conceptually-related and
yet the input domain of these errors is disjoint (Table 2.2.4).

An example of a version containing conceptually-unrelated errors which cause coincident
failures is uclab. We have determined that version uclab contains logical errors attributable to
conceptual errors 7 and 8, and that it is the only version containing logical errors attributable to
conceptual error number 7. This means that version uclab contains logical errors which are
conceptually unrelated with any versions but uiuca and that the input domains of uclab.8 and

Error Numbcer
1 2 3 4 5 6 7 8
1 170 13 105 608 247 314 | 49323 | 43725
2 68 4 0 47 12 0 0 0
3 0 98 0 0 0 0 0 0
4 0 0 0 0 133 0 0 0
5 0 0 0 0 47 0 0 0
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0

Table 2.3.7: Failure Intensity Distribution for Conceptual Errors.

21

Technical Report R9005 Charles River Analytics Inc.

Error Number
1 2 3 | 4 5 6 7 8
ncsud | 121 0 of] o 0 0 0 0
uclab 0 0 0 o] o of 49323 2197
uclac ol 104 of 41| 438 0 0 0
uclad ol o ol 244] 11 0 0 0
uclae | 185 0 0 0 0 0 0 0
uiuca 0 0 0 ol 181 314 0] 41528
uiucd ol 9 0 0 0 0 0 0
uiuce 0 0 0 ol 47 0 0 0
uvab 0 ol 105 0 0 0 0 0
uvac ol 112 ol 471 181 0 0 0

Table 2.3.8: Version Failure Distributions for Conceptual Errors.

uiuca.8 are disjoint. In spite of this apparent independence of version uclab, table 2.2.3 shows
version uclab to exhibit correlated failure behavior with 6 other versions. In addition table 2.2.5
shows uclac.7 to be failure correlated with 8 conceptually-unrelated errors.

These observations lead us to believe that the correlation of conceptually-related logical
errors is highly dependent upon the type of conceptual error and the manifestation of this error.
The nondeterministic nature of an uninitialized variable makes the correlation of logical errors
resulting from conceptual error number 7 difficult to predict. The design of version uclab is such
that the effects of uclab. 7 tend to cause correlation with unrelated errors.

The manifestation of logical errors uclab.8 and uiuca.8 are such that the erroneous code is
called upon in situations whose input domains are disjoint. This behavior is not determined by
conceptual error number 8 alone. Further, it cannot be determined by logical errors uclab.8 and
uiuca.8 alone. In order to determine the effects of conceptual error number 8 upon the failure
behavior of versions uclab and uiuca, it is necessary to understand the computations of these

programs in detail.

22

Technical Report R9005 Charles River Analytics Inc.

Finally, the nature of conceptual error number S is such that the input domains of logical
errors attributable to it significantly overlap with each other. This leads us to believe that the nature
of conceptual error number 5 is completely different from that of 7 or 8.

2.4. Results of Error Analysis

Conceptually-related logical errors cause coincident failures. Diversity of development
methods and diversity of testing methods may help to inhibit the occurrence of coincident failures
caused by conceptually-related logical errors. However, the elimination of conceptually related
errors is not enough since conceptually unrelated errors can cause dependent failure behavior as
well. Here, the interaction between a logical error and the computations of the program and the
interaction between different logical errors with overlapping input domains is important.
Enforcement of diversity upon development and testing methodologies needs to take into account
the degree to which a methodology inhibits or promotes these types of interaction.

The occurrence of unrelated logical errors causes negative correlation. The enforcement of
diversity upon development and testing methodologies should promote the production of programs
whose errors are conceptually- and input-unrelated. In addition, relationships other than input-
related and conceptually-related should be developed in order to relate logical errors which will
cause coincident failures and logical errors which will not.

We have found that site diversity is not enough of a factor in development to significantly
reduce the occurrence of conceptually-related errors. Since conceptually related errors cause
coincident failures, site diversity is not likely to reduce the numbers of coincident failures in the

development of multiple versions.

Technical Report R3005 Charles River Analytics Inc.

3. ACCEPTANCE CHECK DEVELOPMENT

In this section we present our theory of generalized interactive program checkers. In
addition we present some examples of complex programs for which we have developed interactive

checkers.
3.1 Interactive Proofs

Interactive Proofs is a new approach to software validation. Interactive Proofs is different
than formal verification in that each particular output for a given input is "verified" in contrast to
verifying the correctness of software for all inputs. Here, we give an informal overview of this
approach to checking of program correctness. This approach owes much to the development of the
theory of Interactive Proofs. [Blum and Raghavan 1988] [Babai 1989] [Goldwasser, Micali, and
Rackoff 1985]

The scenario we are considering below is as follows: consider a program P supposedly
satisfying specification S, and producing the output P(x) on some input x. We would like to know
how much trust we can have in the correctness of this particular output. The approach taken here
is different from program correctness proving techniques in that it is much more practical in
general, though it tells us only if the program is correct in the particular instances. The problems
for which efficient program checkers were constructed include examples from graphs, codes,
matrices, latin squares, and multisets.

The approach is to construct a program checker C which checks whether the output P(x) of
a program P on input x is indeed the answer S(x) on input X, where P is a program for S. The
checker C depends on the specification S and not on the program P. Thus modifications of P do
not require changes in C. The checker C is a probabilistic algorithm. Program P produces an error
on input x if P(x) # S(x). In such a case the checker will output INCORRECT with an
overwhelming probability, depending only on a security parameter k. It is very important to stress
that the probabilities (of checker's error, for example) are over the internal coin tosses of C, and
depend on neither program P nor inputs x. If P(x) = S(x), i.e. no error occurs in the particular
instance, the checker C may still output INCORRECT if there is another instance x', such that
P(x") # S(x'). If the program P is always correct the checker will always output CORRECT. Itis

24

Technical Report R9005 Charles River Analytics Inc.

natural to require that the checker spends less time than the program. In some cases it is even
possible to construct checkers which run much faster than the program they check.

Example 1: Graph Isomorphism. Let program P given two graphs produce 1 if the
graphs are isomorphic and 0 otherwise. Let P(G,G;) = 0 for graphs Gg and G;.
The verification of this output may be very hard since there is no way known to

produce a short proof of graph non-isomorphism. But the following checker will

1
correctly identify an error in P(Go, G1) = 0 with probability ok.

DO k times
i := random_bit (ie. i€ {0,1})
T := random_permutation (G;)
if P(T,Go) = i then return BUGGY

END DO
return CORRECT

Note that the checker uses the specification knowledge that graph isomorphism is
invariant under random permutations. If the checker returns BUGGY, then the bug
can be localized since P was wrong either in P(Gg, G1) or in P(T,Gg, assuming

that T has been correctly computed).

We would like to stress interactive proof simplicity of this checker's algorithm. Much of
the theory so far has been developed for NP decision type problems. In the next section, we

discuss its generalization to arbitrary programs.
3.2 Generalized Interactive Checkers
Blum and Raghavan define a test procedure for asserting the correctness of a program

solving a decision/search problem in NP on a given input. Here, we discuss one possible

generalization to testing arbitrary programs by reducing to a decision problem. Let

25

Technical Report R9005 Charles River Analytics Inc.

X be the set of all possible inputs for a problem
Y be the set of all possible outputs for a problem

Define the program specification S by:

S: X - Y such that S(x) =y for xe X,ye Y

Let P be a program supposedly satisfying the specification, then
P: X - Y such that P(x) =y forxe X,ye Y

Let x by an arbitrary input on which the program P produces the output y. We would like
to assert whether y is correct or not. We define two equivalence classes. Now, there are two
natural equivalence relations that we can define on the set X. Recall that a relation on the set X is

defined as any subset of X x X. An equivalence relation is a relation which is reflexive, symmetric

and transitive. Consider the relation Ry:
x1Rxx2 © S(x1) = S(xz) for x1,x2e X

Clearly,

x1Rxxy
X1Rxx7 ==> x2Rxx1
x1Rxx2 and XRxx3 ==> x1Rxx3

Hence, R, is an equivalence relation on the set X.

Now consider the relation Ry:

XiRyxy <==> x€ S-1 (y) and x2€ S-1 (y)

26

Technical Report R9005 Charles River Analytics Inc.

where S-1 is the inverse set function associated with the function S. Again,

leyxl
x1Ryxa ==> x2Ryxq

x1Ryxz and xRyx3 ==> x1Ryx3

Hence, a program P producing an output y* on an input x* generates the following two

equivalence classes:

X & ={xe X: S(x) =S(x¥)}

Xy =[x € X: S(x) =y*= P(x*)}

That is, X, is the set of all inputs for which a correct program produces the output S(x*) which is

the correct output for the input x*. On the other hand, Xy« is the set of all inputs for which a

correct program produces the output y*=P(x") which may or may not be the correct output for the

input x*, Now consider the following proposition:

Proposition: Given x* € X and y* €Y with y* = P(x*), the program output y* is correct
(more precisely, P(x*) = S(x*)) if and only if Xy« = Xy«.

Proof:

(=>) Let y* be correct. Then
y* = P(x*) = S(x*)

Let xe X,+. Then

S(x) = S(x*) = y* = xe S-1 (y*)

Hence,

27

Technical Report R9005 Charles River Analytics Inc.

xe Xy»

Now, let xe Xy» => S(x) = y* = P(x*) = S(x*)
So xeXys»

(<) Let Xy» = Xy»
Now x*e X,+. Since Xy+ = Xy this implies x*e Xy+. Therefore,

x*e S-1 (P(x*))

which implies
S(x*) = P(x*)

Q.E.D.

We have thus reduced the problem of checking the correctness of a program output on a
given input to testing the equality of two sets. What we need is a characterization of Xy« and Xy«

based on the specification S. If the number of elements in the sets X+ and Xy« are infinite, then
we need a random characterization. If these are available, then we can proceed with probabilistic

interactive checkers.
Suppose that we have a random characterization of X+ and Xy«. Given these random

characterizations, we propose the following checker based solely on invoking the program P on
random inputs from the subsets X+ and Xy« and comparing the program outputs at these random

inputs to the output being tested.

gi;ngralizgd Checker. Given a program P supposedly satisfying a specification S, an input

x¥*e X, and a corresponding output y*€ Y, let

S: X — Y where S(x) =y forxeX,yeY

28

Technical Report R9005 Charles River Analytics Inc.

P: X — Y where P(x) =y forxe X,ye Y
define

Xy =({xe X: S(x) =S(x*))
Xy ={xe X: S(x) = y*}

where X, is the set of all inputs on which a correct program would generate the same output as on
x*, and where Xy~ is the set of all inputs on which a correct program would have generated the

output (possibly incorrect) y*.

1. Choose randomly between Xyx and Xy+ .
2. Choose a random element z from the set selected in step 1.

3. Invoke the program P on the input z selected in step 2.
If P(z) # y*, report INCORRECT
If P(z) = y*, go to step 1 up to k times.

If a program output is correct, then such a checker will always return correct. If the
program output y* is not correct, then the performance of the checker will be determined by the

relationship between the element of y* € Y and the following two subsets of Y:

P(X,+) = {ye Y : y=P(x) for some xe Xy}
P(Xys) = {ye Y : y=P(x) for some xe Xy+}

If P(Xx) UP(Xys) - {y*} =, then such a checker will miss the incorrect output.

If P(Xx+) U P(Xy») - {y*) # D, then such a checker will eventually detect the incorrect
output. The probability of the checker hitting an input providing inconsistency will depend on the

relative cardinality of the two subsets of X

(XE Xy# U Xy* : P(x)=y*}

29

Technical Report R9005 Charles River Analytics Inc.

{xe Xy UXyr : P(x)2y*)

If the intersection of the subsets P(X,+) and P(X,+) is empty, then the efficiency of the checker is
very high.

Example 2: Chg&kgLfQL&S_QII_QLELQmm Consider a program P which sorts a set

of inputs according to a given relation, given the input x* and output y*:

x* = {x], xg, s X0}

y* = {¥1, Y2 - ¥2)

The equivalence classes X,* and X,* are given by:

X,* = {T (x*): T (x*)is a random permutation of x*}

Xy =, if y* is not ordered
= {T(y*)) otherwise

where T is a random permutation of y*. Now the checker can be

implemented with the algorithm:

1. Choose randomly by z* from x* or y*.

2. Select a random permutation T(z*).

3. If P(T(z*)) # y*, report INCORRECT
P(T(z*)) = y*, repeat up to k times.

This checker will eventually detect all ordered incorrect answers for a sorter program.
Unordered incorrect answers may also be detected depending on the relationship between the sets

P (T(x*)) and P (T(y*)).

30

Technical Report R9005 Charles River Analytics Inc.

Example 3: Checker for a Least Squares Estimator Program. This example
corresponds to the estimation module in the RSDIMU experiment. Consider a

program P computing the least squares estimate

a=Cf

where f and a are the real-valued measurement and estimate vectors with dim (f)

> dim (@), and C' is the generalized inverse of the matrix C. Suppose, for a given
measurement f*, the program P computes the estimate a*. In this case, the

equivalence classes Xp+ and X« are given by:

Xp =" +[1- cc’] £ fis arbitrary}
Xa* = {Ca* + [I - CC#] f: f is arbitrary

In order to reduce the complexity of the checker, we employ the program P
in the random characterization of these sets. For a correct program P, we have

X = {f* + f - CP(f) : f arbitrary}
X,* = (Ca* + f - C P(f) : f arbitrary}

Now the checker can be implemented with the algorithm

1. Choose randomly either Xp+ or X,
2. Choose a random element f from the set selected in step 1
3. If P(f) # a*, report INCORRECT

P(f) = a*, repeat up to k times.

Note that this checker employs the program in the selection of a random element from two

equivalence classes.

Example 4: Checker for an Eigenval mputation. Consider a program P which

computes the eigenvalues {11 s eees ln} for real valued square matrices A:

31

Technical Report R9005 Charles River Analytics Inc.

$: Rnx Rn — Cn with S(A) = (A, ..., An)

Suppose for a given matrix A*, the program P computes the eigenvalues

{k;, - k;} The equivalence classes are given by:

Xa* = (PA* P'l; Pis arbitrary, nonsingular}

X,' = (PJ* P': Pis arbitrary, nonsingular}

with J* = block diagonal {J], ..., J5) where J; are the Jordan blocks associated

. 3 ‘ * - . »
with the eigenvalues A;, ..., A, Thatis, the equivalence classes consist of random
similarity transformations of the input matrix and the Jordan normal form of the

eigenvalue outputs.

32

Technical Report R9005 Charles River Analytics Inc.

4. RELIABILITY ANALYSIS

In this section we present the results of our reliability analysis using the data obtained from
the RSDIMU experiment.

4.1. N-Version vs. Recovery Block Structures

In this section we present a comparison of the reliability of N-Version structures and
Recovery Block Structures. We use models of the reliability of structures built from an infinite
population of versions characterized by a failure intensity distribution g. We then compare the
performance of these two types of structures using the failure intensity distribution obtained from
the RSDIMU experiment.

4.1.1. N-Version Structure Reliability

In an N-Version fault tolerant structure, N independently designed similar software
components (where N is an odd integer) are executed and the results are passed to a voter. The
majority consensus output is the output of the fault tolerant structure. The probability of failure of
such a structure py is shown by [Eckhardt and Lee, 1985] to be:

Pk = igo (J;n‘ ;()‘1{3)’(1 -—IET)H) g(ﬁ), where m-—-(k ; 1) 4.1.1

4.1.2. Recovery Block Structure Reliability

A fault tolerant recovery block structure consists of k versions of redundant software (one
primary alternate and k-1 supplementary alternates) to be executed serially with sequential
acceptance checks performed between version executions.

Clearly, the overall reliability of a recovery block structure not only depends on the
reliability of the individual component versions, but also on the reliability of the acceptance check
routine. Our definition of acceptance check reliability encompasses not only the reliability of the

33

Technical Report R9005 Charles River Analytics Inc.

acceptance check software, but also the coverage of the acceptance check algorithm in
distinguishing between correct and incorrect version outputs.

4.1.2.1. Recovery Block Structure Reliability with Perfect Acceptance Check
We begin our analysis of recovery block structures in this section by assuming the
existence of a perfect acceptance check routine. That is, an acceptance check routine containing no

software errors with the additional property that for a given input-output set of data:

1. Pfacceptance check declares output incorrect | output is correct] =0
2. Pfacceptance check declares output correct | output is incorrect] = 0

That is, the first probability refers to the false alarm rate while the latter refers to the probability of

missed detection of the acceptance check test. Later sections will approach the problem assuming

non-zero failure probability.
Assume that we have a version population which is characterized by the failure intensity
distribution:

i) 1<isN 4.1.2
i)

Under this assumption, the probability of failure of a k-version recovery block structure with

perfect acceptance check is:

N
vk g
= 1 1
pk—z,O(N) g 413
4.1.2.2. Recovery Block Structure Reliability with Imperfect Acceptance Check

In order to model the reliability of a recovery block structure with an imperfect acceptance

check, we make the following assumptions:

34

Technical Report R9005 Charles River Analytics Inc.

1. Placceptance check declares output incorrect | output is correct] = 0
2. Acceptance check failures are independent of component version failures.

The first assumption concerning the false alarm rate is a reasonable one for most acceptance
checks. The second assumption's validity is a function of the specific application under

consideration. Under the second assumption:

P[acceptance check declares output correct | output is incorrect]
= P[acceptance check fails]

=€

where € denotes the probability of missed detection of the acceptance check. Under these

assumptions we are able to determine the probability g that a k-version recovery block structure
will fail. If we assume that k-versions are chosen from a population which is characterized by the
failure intensity distribution of 4.1.2, then the probability of failure is

k-1
qe)=p.(1-€" +€eX p,(1- g) ! 4.1.4
i=1

where p; is given by 4.1.3.
4.1.3. Comparison of Structures for RSDIMU Experiment Version Population

In this section we compare the reliability of N-Version and Recovery Block fault tolerant
structures. In particular we will consider a population of programs which is characterized by the
failure intensity distribution obtained from the RSDIMU experiment. We have combined the
individual cases Sg o through S, to obtain the failure intensity distribution of table 4.1.3.1.
Using equations 4.1.1 and 4.1.4 we are able to compare the predicted effectiveness of N-Version
and recovery block structures built from a realistic population.

35

Technical Report R9005 Charles River Analytics Inc.

0 8(6)
0720 | 9.1802¢-1
120 5.8575e-2
2120 2.2995¢-2
320 | 83628¢-5
4/20 1.5748¢-4
5/20 8.7972e-5
620 | 4.5615¢-5
720 | 2.2808c-5
8720 6.5164¢-6

9/20-20/20 0

Table 4.1.3.1: Failure Intensity Distribution Obtained from RSDIMU Experiment.

1072
o
=
o ilon = 0.5
3 epsilon
S 1073
bt 3
>]
n 1 epsilon = 0.05
©
z 10
is]
g ~— epsilon = 0.005
a .

10 5 L] ¥ T T T v Y T T T

0 2 4 6 8 10 12

" Number of Versions

Figure 4.1.1: Comparison of N-Version and Recovery Block Structure Reliability.

The result of modelling an N-Version structure with a recovery block structure with an
imperfect acceptance check is shown in figure 4.1.1. Here we have sampled the reliability curve

36

Technical Report R9005 Charles River Analytics Inc.

for a recovery block structure using acceptance check failure probabilities -- € -- of 50%, 5%, and
0.5%. It is immediately apparent that a recovery block structure whose acceptance check is no
more than 50% reliable is no more effective than an N-Version structure no matter how many
versions are used.

With more reliable acceptance checks, however, there is an advantage to choosing to build
a recovery block structure over an N-Version structure when a relatively small number of versions
are involved. With the population of table 4.1.3.1 the decision point of which fault tolerant

structure to use is:

use N-Version use Recovery Block

Structure Structure
for e = 5%: k>5 k<5
fore = 0.5%: k>10 k<10

If three versions are to be used in building a structure, the failure probability of our acceptance
check would have to be less than approximately 0.195 in order to warrant the use of N-Version
programming instead of recovery blocks.

This leads us to believe that if it is possible to develop a reasonably reliable acceptance
check whose failure behavior is independent of the programs that it is checking, then the decision
of whether to use N-Version programming or recovery blocks depends upon the number of
versions that are to be employed. In the case where it is possible to develop a large number of
versions to include in the structure, then N-Version programming should be employed. On the
other hand, if only a small number of versions can be developed then it is better to use recovery
blocks.

The development of a recovery block model for which the acceptance check is not assumed
to be independent would be very advantageous. This would make it possible to decide which fault
tolerant methodology to use in the case where an independent acceptance check is not possible.

37

Technical Report R9005 Charles River Analytics Inc.

4.2. Reliability of Software Fault Tolerant Structures Under Diverse
Methodologies

Here we examine the reliability of fault tolerant software structures in order to
determine how best to exploit the independence which exists between subpopulations of the twenty
RSDIMU versions. This will help us to determine the best ways to exploit independence resulting
from diverse development methodologies. '

The RSDIMU programs were developed by independent development teams at four
development sites. They were then certified at three different certification sites. The different sites
lead to the determination of two different subpopulation classifications. These are classification
according to development site and classification according to certification site. In addition, in
examining the individual reliabilities of the programs we have identified three clearly defined
reliability subpopulations. We refer to these subpopulations as high, medium, and low reliability
groups. By separating the programs into these three groups independent of development and
certification site, we are able to fabricate diverse subpopulations.

In the following sections we model the reliability of fault tolerant software structures which

are built using the following techniques:

o subpopulation structures: Structures built using only programs from
within each specific subpopulation.

« homogenous structures: Structures built using the aggregate of all
subpopulations.

In comparing the subpopulation structures with the homogenous structure we must be
careful only to generalize the end results. This comparison is not meaningful when we are
searching for the sources of the software failures. In other words we cannot say that the
homogenous structure showed a relatively poor reliability because of subtle dependencies between
the methodologies at different development sites or certification sites. This is invalid because cross
correlation between programs at different development sites could be due to planned factors in the
experiment, such as the use of a common specification and the fact that versions from different

development sites were certified at the same certification site.

38

Technical Report R9005 Charles River Analytics Inc.

4.2.1. Diversity of Development Site

The failure intensity distribution of Table 4.2.1.1. results from separating the versions into

four groups according to their development site.

failure development site
intensity ncsu ucla uiuc uva homogenous

0 920616 866187 878637 920379 845268
1 130 53982 42025 262 53933
2 0 566 84 105 21173
3 0 11 0 0 77
3 0 0 0 0 145
5 0 0 0 0 81
6 42
7 21
8

9-20

Table 4.2.1.1: Failure Intensity Distribution by Development Site.

The average reliability varies widely, and sites ucla and uiuc have a very high number of
single version failures. Of the single version failures in the ucla subpopulation, 99.1% are due to
the failure of version uclab. Of the single version failures in the uiuc subpopulation, 99.9% are
due to the failure of version uiuca.

Figure 4.2.1.1 shows the improvement of reliability of structures formed from
subpopulations and the homogenous population. The uva subpopulation structure showed less
than an order of magnitude improvement in reliability even though its failure intensity distribution
in table 4.2.1.1 shows fewer high-intensity errors than the ucla subpopulation. The reason for this
is that the ucla subpopulatlon has a very large number of failures of intensity 1. Note that the
reliability improvement of the ncsu, ucla, and uiuc structures are nearly identical even though the
ncsu failure intensity distribution shows significantly fewer coincident failures and higher average
reliability.

A significant feature of figure 4.2.1.1 is the remarkable improvement of the homogenous
structure compared to that of the subpopulation structures. This suggests that the dependencies

39

Technical Report R9005 Charles River Analytics Inc.

between versions in the subpopulations are not as significant when those subpopulations are
combined. This is because there is more dependent failure behavior between versions from the

same subpopulation that from different subpopulations.

1 o
3 ~
Y

g \\
o] '\,\ ""tc-,,,,\
E 1 Y Lriew.,

3 "\ N | vt ncsu
2 : ~,‘ ucla
E - S .
© 4 ., uiuc
L S, — uva
B 013 RO i Homogenous
N ~e
] -
E
B
<}
z

.001 LA | L] T T 1 T T T T Y
0 2 4 6 8 10 12

Number of Versions

Figure 4.2.1.1: Coincident Error Model of Reliability
of N-Version Structures Built from Development Subpopulations.

Figure 4.2.1.2. shows the finite population model of structures built from development
subpopulations. Each subpopulation structure in figure 4.2.1.2. performed as would be expected
from the failure intensity distributions of table 4.2.1.1. In this figure the lines which drop off the
plot (ncsu at N = 3 and uiuc and uva at N = 5) are considered to have reliability 1.0 at this point.
This is because no coincident failures were observed that could cause failure of any structure with
the N versions. The homogenous structure shows a smaller improvement than the subpopulations
in the finite population mode. By considering the populations to be composed only of the versions
developed in the RSDIMU experiment, we exaggerate the effects of the low reliability versions on
the resulting structure. In the infinite population of the coincident error model, the effect of this
small number of low reliability versions is overcome by the independence which exists in the

majority of the versions.

40

Technical Report R9005 Charles River Analytics Inc.

1
£
B
o
8
e A
a
o 3 N\~ | ncsu
% ucla
S o . e uiuc
3 e — uwa
N RO it Homogenous
s 001 S
£ .
z
.0001 + | B R | T

6 8 10 12
Number of Versions

Figure 4.2.1.2: Finite Population Model of Reliability
of N-Version Structures Built from Development Subpopulations.

4.2.2. Diversity of Certification Site

In order to determine the effects of certification site diversity on the independence of
failures we divided the versions into three categories according to table 4.2.2.1.

ncsu ucsb uva

ncsuc uclac ncsua
ncsud uclac ncsub
ncsuc uiuca uclaa
uclad uiuch uclab
niucc niucd uiuce
uvaa uvab uvad
uvac uvac

Table 4.2.2.1. Certification Sites for RSDIMU Programs.

41

Technical Report R9005 Charles River Analytics Inc.

The failure intensity distribution of table 4.2.2.2. results from separating these versions into

subpopulations by certification site.

failure certification site
intensity TKSu uva ucsb homogcnous
0 920102 867192 877872 845268
1 330 53554 42545 53933
2 313 ' 0 224 21173
3 1 0 14 77
4 0 0 56 145
5 0 0 34 81
6 0 0 42
7 0 0 21
8 6
9-20 0

Table 4.2.2.2. Failure Intensity Distribution by Certification Site.

Here we see that the highest intensity failures are all within the same certification site
subpopulation. The average reliability of the subpopulations uva and ucsb are similar while the
ncsu subpopulation exhibits a much higher average reliability. 99.9% of the uva failures were
caused by version uclab and 98.8% of the single version failures in ucsb were caused by version

uiuca.
In figure 4.2.2.1 we see some of the same behavior that we saw in figure 4.2.1.1. The

ncsu subpopulation structure shows little improvement even though there are relatively few
coincident errors. We also see that for N < 8 the uva and ucsb subpopulations exhibit less than an

order of magnitude reliability improvement even though the failure intensity distributions for these
subpopulations show dramatic improvement for failure intensities greater than 1. This is most
dramatic in the uva subpopulation which shows better than independent behavior. Once again, the

homogenous structure shows more improvement than the subpopulation structures.

42

Technical Report R9005 Charles River Analytics Inc.
1 -
> \\: -----
= . e UL T YN
g \.‘ . \ I
o ; .‘.\. \ - .
a . ~, e
-, LY
o S~ ~. | ncsu
2 N . T T2
& ~. | === ucsb
° .01 R Homogenous
N e
-
3
[+]
z
001 T T M T v T 1 M 1 i
0 2 4 6 8 10 12
Number of Versions

Figure 4.2.2.1: Coincident Model of Reliability
of N-Version Structures Built from Certification Subpopulations.

1 -Q..
i'.~~.
Z Y
3 LN
0 1 A WY
9 1 \\ \“‘
o \ \ .‘.\
Q L_" """"" ncsu
2 o \ s uva
& \ el | === ucsb
_8 \ |.‘ --~..__.~. Homogenous
g \ LT
£ .001 \ 3 .
E \ Y
o L)
Z \‘1 5
.0001 + — —— .
0 2 4 6 8 10 12

Number of Versions

Figure 4.2.2.2: Finite Population Model of Reliability
of N-Version Structures Built from Certification Subpopulations.

Technical Report R9005 Charles River Analytics Inc.
As in figure 4.2.2.1, figure 4.2.2.2 shows that the homogenous structure performs poorly
in relation to the subpopulation structures for the same reasons as have been discussed.

4.2.3. Diversity of Version Reliability

In order to determine the effects of version reliability diversity upon diverse structure
reliability we created an artificial grouping of the versions according to their reliability. The
version reliabilities of the 20 RSDIMU programs are plotted in figure 4.2.3.1.

8.0e-2
1 o]
6.0e-2 -
z
el 1 o
[4]
L0
S 40e2-
[0
T
2 -
‘©
19
2.0e-2
0.064+0 HG RGBT I G G P O R G -
g@@g@@gg@;a:aa?ﬁa:aaa
SfdocvoeEbovZzZZZZZ
33 333 dd o O WO OV O oC O O TV D
wmwmw—daggmooooommmmm
gL gegesss339:2222233333
c e 3535355333323
Figure 4.2.3.1: Scatter Plot of RSDIMU Version Reliability.

Because of the extremely low reliability of versions uclab and uiuca it is difficult to determine more
than two groups A bctter view of the intenncdiate reliabilily subpopulation is shown in figure

accordm gly.

44

Technical Report R9005 Charles River Analytics Inc.

1.200e-3
1.000e-3 1
8.000e-4
Z
% -
o
S
< 6.000e-4 -
o
bl 4
2
= g
w 4.000e-4 |
a
o]
2.0006-4 o o
’ a
0.0006+0"
. P i o i o
s 0D O®osouvozzzczzo o @
ERRREEE R R R R
0 Q2853553322333 33
3:33:33333

Figure 4.2.3.2: Scatter Plot of RSDIMU Version Reliability with
versions uclab and uiuca removed.

With the information presented in these two figures we divided the versions into three
subpopulations based upon the individual version reliabilities. These subpopulations are shown in
table 4.2.3.1. The variation of reliabilities and the number of versions differ between groups,
however the average reliabilities of these subpopulations is roughly log-linear as shown in figure
4.2.3.3.

45

Technical Report R9005 Charles River Analytics Inc.

High Medium Low
ncsua nesud uclab
ncsub uclkad uiuca
NCSuc uclac uclac
ncsuc diucd

uclaa uiuce
uiucb uvab

uiucc uvac

uvaa

avad

uvac

100
-1 homogenous population .
10 - PR
> average reliability
i
3 10°2
e
o
o -3
§ 10
‘o
" 4
g, 10
=
2
(10 = 5
>
10" 54 ,

Reliability Group

Figure 4.2.3.3: Average Failure Probability of Reliability Group
Subpopulations.

46

Technical Report R9005 Charles River Analytics Inc.

failure Reliability Group
intensity High Medium Low homogenous
0 920744 920020 845358 845268
1 1 35% 54243 53933
2 1 215 21135 21173
3 0 57 10 77
4 0 43 145
5 0 53 81
6) u Az
7 0 21
8 0 6
9-20 0 0

Table 4.2.3.2: Failure Intensity Distributions
by Reliability Groups

Table 4.2.3.2: Shows the failure intensity distributions resulting from partitioning the
versions into reliability subpopulations. It is difficult to draw any conclusions based upon the
failure intensity distributions as there are a different number of versions involved in each
subpopulation. The low reliability subpopulation exhibits 10 failures involving all versions in the
subpopulation while the medium reliability subpopulation has none. The high reliability group has
three failures and two of these were correlated. The high reliability group also contains 7 versions
with reliability 1.0 (no failures reported).

Figure 4.2.3.4: Shows the result of the coincident error model using these fuilure intensity
distributions. The reliability improvement is very small for the low and medium reliability
subpopulations. In the case of the low reliability subpopulation this is due to the high proportion
of correlated failures among the versions in the group. Since there were reported failures involving
all versions, this carries through to the characterization of the infinite population, yielding no
improvement. The improvement in the medium reliability subpopulation is suppressed for
basically the same reason. Only in the highest reliability group do we achieve any improvement.
The single order of magnitude improvement for an 11 version structure is quite small considering
the expense involved in developing this number programs of such high version reliability.

47

Technical Report R9005 Charles River Analytics Inc.
L W it
Z] RN
B] N
g] ~ “ ~ \\ - -
[3] ., ~eo
o A = ‘-\ S~
o 3 . T Low
% : '~," e Madiom
u 1 . |- High
E o1 - ‘. ~. | T Homogenous
5
E .
(o] o
rd
.001 v T T T v T v] T
0 2 4 6 8 10 12

Normalized Failure Probability

o
2

.001

Number of Versions

Figure 4.2.3.4: Coincident Model of Reliability
of N-Version Structures Built from Reliability Subpopulations.

K ——
" N
N, \\
-
\.‘ ‘
N
',
)
1 ‘.‘ """"" Low
‘\ S M Medium
T R High
\\ T, e Homogenous
\ TSl
\ "~
\
1
\
1 v 1 v ll b M [¥ 1
0 2 4 6 8 10 12
Number of Versions

Figure 4.2.3.5: Finite Population Model of Reliability
of N-Version Structures Built from Reliability Subpopulations.

48

Technical Report R9005 Charles River Analytics Inc.

Once again, the homogenous structure shows a better improvement than the subpopulation
structures. Here, however, it is because we have forced dependencies in the subpopulations by
characterizing them by their average reliability.

The finite population model of figure 4.2.3.5 shows similar results to that of figure
4.2.3.4. Due to the varying size of the subpopulations, the prediction of structure reliability is not
valid for larger values of N in some subpopulations. This occurs for small N in the low reliability

group since there are only three versions in this subpopulation.
42.4. Results of Subpopulation Diversity Reliability Analysis

The analysis presented in the preceding sections contains some surprising observations. In
addition there are some conclusions that lead to further study of diversity and N-Version reliability
modelling. One significant observation is the improvement of homogenous structures over that of
subpopulation structures. In all examples of subpopulations the coincident error model predicts

significant improvement of the homogenous structure in the range of 1 <N < 11 versions. While

the subpopulation structures usually show some improvement in this range, this improvement is
limited to approximately 1 order of magnitude while the homogenous structure improves by
approximately 2 orders of magnitude. This leads us to believe that a population which incorporates
versions which were produced by different methodologies will benefit more from N-Version
programming than a population whose versions were produced by similar methodologies.

The finite population model of the homogenous structure exhibits smaller reliability
improvement in the case of the homogenous population than any of the subpopulation structures.
This result contradicts the predictions of the infinite population model. By limiting the population
of versions, the finite population model exaggerates the effects of the extremely low reliability
versions in the RSDIMU population.

4.3. Diverse N-Version Fault Tolerant Structures

Here we present the idea of a diverse N-Version fault tolerant software structure. Such a
structure is intended to take advantage of independence which results from using different
development methodologies to develop versions which are combined into a single fault tolerant
software structure. We use the RSDIMU software versions to examine the reliability of these

49

Technical Report R9005 Charles River Analytics Inc.

diverse structures and to predict the possible advantages of diverse structures over homogenous

structures.
4.3.1. Definition and Modelling of Diverse Structures

A diverse software structure is composed of N different programs developed under M
different methodologies. The more diverse the methodologies are, the greater the advantage of

N N
using diverse structures will be. A diverse structure has between lﬁJ and [M’] versions from each

of the M methodologies. In the case when N = kM where k is an integer, the method of choosing
versions for a diverse structure is uniquely defined. However, where k is not an integer the
method of choosing versions for a diverse structure is not uniquely defined. In such a case there
will be N M different methods of choosing versions. These methods represent different
numbers of versions from each methodology to incorporate into the diverse structure.

In [Littlewood and Miller 1990] the authors present an infinite population model for diverse

structures where N < M. Consider the set T4 of programs developed under methodology A.

Similarly consider the sets T1g and Ic. For N=M=3 the probability of failure of a diverse structure

P; is defined by

P, = E(GAGB) + E(BABC) + E((')BGC) 4.3.1
- 35(9A939c) B

This represents a voting structure which fails whenever a majority of its versions fail. The

expected values of 4.3.1. are defined as follows:

He,6;)

4.3.2

k
=Y Y Y vm,x)vng.x;) S(n,) S(ng)
i=lgen

A A Ty € Iy

50

Technical Report R9005 Charles River Analytics Inc.

E{BAGBGC)
433

k
=Z Z Z Z VT %) Mg %) MTeox;) S{my) S(rg) S(me)

i=1 g eI, nge M nce Me

Where S(r,) is the probability of developing a program =, under methodology A and v, X)) is

equal to 1 if program T fails on input X..
For the infinite population, we can obtain these expected values using a joint failure

intensity distribution. The joint failure intensity distribution g is defined as:

} x versions from A ‘l
g(x,y.z) =(total # times that ‘ y versions from B ‘ fail over all inputs

z versions from C 434
Using this definition, equations 4.3.2. and 4.3.3. become:
A I8 Iid '
Hoon)= 3 3 3 &3]
i=1j=1k=1 'Al] B 4.3.5
A 1B Id _

d9A9590)= Z @(i,j,k)(]'L)(J“)(L

i=lj; kgl AJ\B| IQ) 4.3.6

Using 4.3.1, 4.3.5, and 4.3.6 it is possible to predict the performance of a diverse 3 version fault
tolerant software structure built from infinite subpopulations A, B, and C which are characterized
by g.

If we consider only the 20 versions of the RSDIMU experiment, we can predict the
reliability of a randomly chosen diverse structure. We first partition the set of 20 programs into

51

Technical Report R9005 Charles River Analytics Inc.

disjoint subsets. Consider A, B, and C as disjoint subsets of the 20 programs. Let ‘¥ be the set of

all diverse structures which may be chosen from the 3 sets A, B, and C. Let S(J) be a function
which characterizes a set of programs J which form a structure by giving a vector (x, y, z) where:

Sx3) = UnAl
S,(J) = JABI 43.7
S0 = INCl

Using (4.3.7) we can partition ¥ into disjoint subsets ‘P'; such that:

¥, ={111,J2e WA SU) =80y}, for0<i<N[mod]3 43.8

If we assume no preference between sets A, B, and C in producing a diverse structure we can

estimate the reliability of a 3-Version structure P, in terms of '¥; as

N[mod]3 | ,
Py = P N (W)
z;) (N[mod]3) + 1 N 43.9

...where P'\(W;) is an estimate of the reliability of a randomly chosen diverse structure J € ¥,

composed of a unique number of versions from each of the sets A, B, and C.

In order to define P'y we refer to the estimator of [Eckhardt, et. al. 1990]. Let

if 1 versions in set J fail on input x

1
uj (x.) = 0 if otherwise. 4.3.10

Given a diverse structure j we know that the proportion of inputs on which a structure j fails is

ui(x;, 1) wherem=0%t1
i) 2 4.3.11

o

[

i=11

52

Technical Report R9005 Charles River Analytics Inc.
Using 4.3.11 we can define P’y in terms of u; as:
D)

~ je\yi=11

P 'Nn () -

uj (xiv l)

Z| [

4.3.12

In 4.3.12 we know S(j;) = S(j;) for all j;, jj € ‘¥ so it is a straightforward task to produce the set

V. For the version subpopulations of section 4.2. the size of ¥ is small enough to fit in computer
memory so that it is possible to directly compute the numerator of 4.3.12in a reasonable amount of

time. Thus we can compute Py of 4.3.9 by partitioning ¥ into '¥'; and directly computing P'y

(‘Fy).

The graph of figure 4.3.1 shows the results of our analysis using the Littlewood-Miller
model for a 3-Version diverse structure. If we assume that all of the versions in a homogenous
population fail independently we can obtain a prediction of the reliability of an N-Version structure
using only the reliabilities of the 20 RSDIMU versions. The resulting reliability is labeled
independent in figure 4.3.1. This represents the upper bound of reliability for any type of N-
Version structure. The lower bound of reliability for a diverse N-Version structure was shown by
Littlewood and Miller to be the Eckhardt-Lee model of the homogenous population, since Eckhardt

and Lee assumes
Cov(0,, 6g) = Var(04) = Var(0p)

This lower bound is labeled coincident also in figure 4.3.1. Note that if we desire to choose
multiple versions from the same population, the Littlewood-Miller model suffers from the same
identical distribution assumption as the Eckhardt-Lee model. [Eckhardt and Lee, 1985]

In order to investigate the effects of diverse methodologies we consider the site diversity

discussed in section 4.2, specifically development site diversity and certification site diversity.

53

Charles River Analytics Inc.

Technical Report R9005
10" 25
10°34

.4'

> 10 1
5]
g E
<4 10'5-5
m -
o 3
5]
= -6
N 10 E
10-71

10°8

Centification Site Diversity (Litlewood-Miller)

Number of Versions

Figure 4.3.1: Comparison of Infinite Population Models for Diverse

and Homogenous Structures.

12

In figure 4.3.1 we see that the reliability of diverse structures lies within the upper and
lower bounds provided by the coincident and independent error models. This modest reliability
improvement is expected since the different sites do not necessarily represent diverse
methodologies and indeed certain common methodologies were forced upon the sites. In addition
we have compared the finite population predictors to give an unbiased estimate of structure
reliability based solely upon the popul:iirtibﬁ of 20 RSDIMU versions.

54

Charles River Analytics Inc.

A
.

A

.
“

*,, —— Homogenous
A Y

’r"’!h

Certification Site Diversity ———3p»

v Devclopment Site Diversity
3’1’&-. K

2
SelS.,
. -y,
- N,
S ST
Cal e
o tw,
netwt,
ot
“ate
e

Technical Report R9005
1025
1034
>]
=]
3
° 10~ 4
a :
o b
3 .
=
u.
10~ 5':
10°6
0

10 12

Number of Versions

Figure 4.3.2: Comparison of Finite Population Structure Reliability
for Diverse and Homogenous Structures.

Figure 4.3.2. shows a comparison of the certification site and development site diverse structures
and the homogenous structure. The result is that the reliability of the homogenous structure is
virtually identical to that of the certification and development structures.

Table 4.3.1 shows the effect of the selection criterion upon the certification site structure.
The inclusion of both high and low reliability structures in the homogenous structure make its
reliability medium while the inclusion of only the medium structures in the certification site diverse

structure yields a medium reliability prediction.
The result is that the certification site structure arrives at the same reliability prediction as

the homogenous structure via an entirely different selection criterion.

55

Technical Report R9005 Charles River Analytics Inc.

Number of Versions Predicted Structure

to Form Structure Reliability

certification sitc | homogenous

ncsu | ucsb | uva | high | med | low structure structure

3 0 0 . .

o | 3| o 7 . ’ .

0 0 3 .

2 1 0 . .

2 0 1 . .

0 2 1 . .

1 2 0 ’ .

0 1 2 ’ .

1 0 2 . .

1 1 1 . . .

Table 4.3.1: Version Selection for Certification Site Diverse Structure
Compared to Homogenous Structure.

56

Technical Report R9005 Charles River Analytics Inc.

5. CONCLUSIONS

In examining the types of errors made by programmers, we have discovered several
different relationships which hold between these errors. These relationships indicate the eventual
failure behavior within a group of programs. Conceptually-Related errors can cause the programs
that contain them to fail dependently, however this is not always the case. We have shown cases
where conceptually related errors have input domains which are disjoint or have very little overlap.
We have also shown that some conceptually-unrelated errors also cause programs containing them
to fail dependently. This is the case when the input domains for errors overlap significantly.

Diverse development methodologies may minimize the occurrence of conceptually-related
errors. Diverse testing methodologies may reduce the occurrence of conceptually-unrelated errors
which cause coincedent failures. It is not enough to relate errors conceptually. Programmer
diversity may cause different levels of failure correlation for programs containing the same
conceptual error, thus indicating the usefulness of the independent development paradigms (used in
the RSDIMU experiment) in reducing identical and wrong errors.

We have described the notion of a diverse N-Version structure in which the redundant
components are produced by diverse methodologies. We have described two models for
predicting the reliability of diverse N-Version structures and used these models in conjunction with
the data obtained from the RSDIMU experiment. Infinite population models indicate that diverse
methodologies might be developed which will offer an improvement of an order of magnitude.
Finite population models indicate that diverse structures perform the same as a structure which
ignores such diversity. The discrepancy between the reliability predictions given by these models
can only be resolved through experimentation with large populations of programs under controlled
conditions.

The diversity present in the RSDIMU experiment was not enough to prevent significant
correlation in the occurrence of conceptually-related errors, input-related errors, and eventual
failures during testing. In order to prevent such correlation, measures beyond development and
certification site diversity should be employed. New methods need to be developed to enforce
diversity on development and testing if the reliability of N-Version structures is to be improved.
Diversity of development and testing methodologies are promising .

We have developed a generalized interactive checker for asserting the correctness of a
program on a given input. The generalized interactive checkers reduce the correctness

57

Technical Report R9005 Charles River Analytics Inc.

determination to testing the equality of two sets generated from the input and output under test. We
have demonstrated the use of this method for typical flight domain examples. Generalized
interactive checkers are promising for the implementation of acceptance checks for recovery
blocks. Moreover, generalized interactive checkers is applicable to the validation of conventional
(single version) high reliability software.

If it is possible to develop an independent acceptance check with a reasonable reliability --
such as those described above -- then the decision of whether to develop an N-Version structure or
recovery block structure can be based upon the number of redundant components which are
allowed by the available resources. For a large number of components it is better to build N-
Version structures, while for a small number of components it is better to build recovery block
structures. In the RSDIMU experiment we determined that for a three version structure, the
acceptance check reliability need only be 80.5% or better to warrant the use of a recovery block
structure. This result indicates that future research should be concentrated on development of

independent acceptance checks.

58

Technical Report R9005 Charles River Analytics Inc.

Acknowledgments

The authors wish to express their gratitude to the following individuals who participated in
this work. Thanks to Dr. Dave Eckhardt for his help in reliability modelling and general guidance
in this research and to Dr. Jay Lala for his management of the subcontract. Gene Itkis participated
in the development of acceptance checks. Cheryl Stubbs assisted us in reliability modelling and
comparison of N-Version and Recovery Block software structures. Prof. Mladen Youk of NCSU
assisted in the diagnosis and identification of software errors in the RSDIMU programs.

59

Technical Report R9005 Charles River Analytics Inc.
6. REFERENCES

Babai, S., Moran, Arthur-Merlin Games: A Randomized Proof System, and Hierarchy of
Complexity Classes, to appear in Journal of Comp. Sci. and Sys.

Blum, M. and Raghavan, P., Program Correctness: Can One Test for 117, IBM Research Report
RC14038, September 1988.

Brilliant, S., Knight, J., and Leveson, N, Analysis of Faults in an N-Version Software
Experiment, IEEE Trans. on Soft. Eng., Vol. 16, No. 2, February 1990.

Eckhardt, D. and Lee, L., A Theoretical Basis for the Analysis of Software Subject to Coincident
Errors, IEEE Trans. on Soft. Eng., Vol. SE-11, No. 12, December 1985.

Eckhardt, D., Caglayan, A., Knight, J., Lee, L., McAllister, D., Vouk, M. and Kelly, J., An
Experimental Evaluation of Software Redundancy as a Strategy for Improving Reliability,
Submitted to IEEE Trans. on Soft. Eng.

Goldwasser, S., Micali, S., and Rackoff, C., The K nowledge Complexity of Interactive Proof
Systems, Proc. of 27t FOCS, 1985.

Littlewood, B. and Miller, D., Conceptual Modeling of Coincident Failures in Multiversion

Lorczak, P. and Caglayan, A., A large Scale Second Generation Experiment in Multi-Version
Software: Analysis of Software and Specification Errors, Charles River Analytics Report No,
R8903, January 1989,

Report Documentation Page

'.|h’/.!;l«""l«‘:ql; Al
o ke SR g
1. Report No. 2 Government Accession No. 3. Recipient’s Catalog No.
NASA CR-187492
4. Title and Subtitle - 1 s. Report Date
Software Reliability Experiments Data Analysis and January 1991
Investigation . ,
6. Performing Organization Code
7. Authorl(s) "8 Performing Organization Report No.

J. Leslie Walker and Alper K. Caglayan

10. Work Unit No.
] 505-66-21

9. Performing Organization Name and Address

11. Contract or Grant No.

The Charles Stark Draper Laboratory Inc.
Cambridge, MA 02139 NAS1-18061

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address
Contractor Report

NASA Langley Research Center 145 ing A Cod
Hampton, VA 23665-5225 ponsering Reeney o

15. Supplementary Notes
This work was prepared by Charles River Analytics Inc., under Charles Stark Draper

Laboratory Inc. subcontract no. 791. J. Leslie Walker and Alper K. Caglayan,
Charles River Analytics Inc., Cambridge, Massachusetts. o
Langley Technical Monitor: Dave E. Eckhardt, Jr.

16. Abstract

The objectives of this study are to investigate
cause independently developed software programs to fail depenQenF]y, and'to.
examine fault-tolerant software structures which maximize reliability gain 1n
the presence of such dependent failure behavior. We used 20 redundant programs
from a software reliablility experiment to analyze the software errors causing
coincident failures, to compare the reliability of N-version and'recovery

block structures composed of these programs, and to examine the impact of
diversity on software reliability using subpopulations of these

programs. The results indicate that both conceptually related and conceptually
unrelated errors can cause coincident failures and that recovery block
structures offer more reliability gain than N-version structures if acceptance
checks that fail independently from the software components are available. We
present a theory of general program checkers which have potential application
for acceptance tests.

the fundémenta1 reasons which

17. Key Words {Suggested by Author(s)) 18. Distribution Statement

Fault tolerant software, software

diversity, N-version, recovery block Unclassified-Unlimited

Subject Category 61

19. Security Classif. (of this report} T T20. Security Classif. (of this page} " T21 No. of pages 22. Price
Unclassified Unclassified 63 AO4

NASA FORM 1626 OCT 86

